MODERN CHARACTERISTICS AND FACTORS AFFECTING ALPORT SYNDROME IN CHILDREN (literature review)
Abstract
In order to study the modern features and factors of influence of Alport syndrome in children, we analyzed data from literary sources of the last decade and the results of our scientific research. It has been established that in the last decade the incidence of Alport syndrome among children has been increasing, that is, contrary to information in the sources, the disease is diagnosed very often. Gene mutation plays a key role in the occurrence of pathology, and the frequency of autosomal dominant and autosomal recessive types of the disease differs fundamentally in the population. According to the etiological factors influencing the clinical course of Alport syndrome, the disease has regional characteristics. This appears in connection with extragenital and genital pathologies of the mother, marriage of close relatives, bad habits of parents, teratogenic effects of drugs on the fetus in the first three months of pregnancy, malformations of the urinary system in the child and secondary immune deficiency. Early detection of various stigmas of dysembryogenesis in children (dental diastema, Gothic palate, sandal-shaped space between the first and second fingers, hypertelorism of the eyes and nipples, syndactyly, polydactyly, bulging of the brow ridge, flat nose, defect of the auricle, hair growth to the forehead, clinodactyly, aplasia kidneys, renal hypoplasia, umbilical hernia) is important in the early diagnosis and assessment of the severity of Alport syndrome.
Keywords:
About the Authors
List of references
Aksenova ME, Konkova NE, Tutelman KM. Uroven arterialnogo davleniya i progressirovanie patologii pochek u detey s X-sseplennыm sindromom Alporta. Nefrologiya 2020; 24(6):78–84. DOI: https://doi.org/10.36485/1561-6274-2020-24-6-78-84
Aksenova ME, Konkova NE, Shagam LI, Povilaytite PE. Klinicheskoe znachenie ultrastrukturnix izmeneniy pochechnoy tkani u detey s X-sseplennim sindromom Alporta. Pediatriya 2019;98(5):14–19 DOI: https://doi.org/10.24110/0031-403X-2019-98-5-14-19
Aksenova M.E. Alport syndrome: our knowledge update. Nephrology (Saint-Petersburg).2021;25(3):75-83.(InRuss.) DOI: https://doi.org/10.36485/1561-6274-2021-25-3-75-83
Axmedov Yu.M, Eshqobulov J.E. Bolalar nefro urologiyasi. Monografiya. Toshkent – 2021.S-209-218. YU.M. Axmedov, J.E. Eshqobulov. Bolalar nefro urologiyasi. Mognografiya. Toshkent – 2021.S-209-218.
Choi C, Ahn S, Min SK, Ha J, Ahn C, Kim Y, et al. Midterm outcome of kidney transplantation from donors with thin basement membrane nephropathy. Transplantation. (2018) 102:e180–e4. doi: 10.1097/TP.0000000000002089. DOI: https://doi.org/10.1097/TP.0000000000002089
Chertow GM, Appel G, Andreoli S, Bangalore S, Block G, Chapman A, et al. study design and baseline characteristics of the cardinal trial: a phase 3 study of bardoxolone methyl in patients with alport syndrome. Am J Nephrol. (2021) 52:180–9. doi: 10.1159/000513777. DOI: https://doi.org/10.1159/000513777
Chew C., Lennor R. Basement membrane defects in genetic kidney diseases. Front Pediatr 2018; 6: 11. DOI: https://doi.org/10.3389/fped.2018.00011
Ding Y, Zhao W, Zhang T, et al. A haplotype in CFH family genes confers high risk of rare glomerular nephropathies. Sci Rep. 2017; 20(7):6004. doi: 10.1038/s41598-017-05173-8. DOI: https://doi.org/10.1038/s41598-017-05173-8
Ding W, Yousefi K, Goncalves S, Goldstein BJ, Sabater AL, Kloosterboer A, et al. Osteopontin deficiency ameliorates Alport pathology by preventing tubular metabolic deficits. JCI Insight. (2018) 3:e94818. doi: 10.1172/jci.insight.94818. DOI: https://doi.org/10.1172/jci.insight.94818
Ducasa GM, Mitrofanova A, Mallela SK, Liu X, Molina J, et al. ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. J Clin Invest. (2019) 129:3387–400. doi: 10.1172/JCI125316. DOI: https://doi.org/10.1172/JCI125316
D’Agati VD. Podocyte growing pains in adaptive FSGS. JASN 2017; 28(10): 2825–2827. DOI: https://doi.org/10.1681/ASN.2017060612
Furlano M, Martínez V, Pybus M, Arce Y, Crespí J, Venegas MDP, et al. Clinical and genetic features of autosomal dominant alport syndrome: a cohort study. Am J Kidney Dis. (2021) 78:560–70.e1. doi: 10.1053/j.ajkd.2021.02.326. DOI: https://doi.org/10.1053/j.ajkd.2021.02.326
Fallerini C, Baldassarri M, Trevisson E et al. Alport syndrome: impact of digenic inheritance in patients management. Clin Genet 2017; 92(1):34–44. DOI: https://doi.org/10.1111/cge.12919
Groopman EE, Marasa M, Cameron-Christie S et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N Engl J Med 2019;10;380(2):142–151.(6)
Guo J, Song W, Boulanger J, Xu EY, Wang F, Zhang Y, et al. Dysregulated Expression of microRNA-21 and disease-related genes in human patients and in a mouse model of alport syndrome. Hum Gene Ther. (2019) 30:865–881. doi: 10.1089/hum.2018.205.
Gross O, Tönshoff B, Weber LT, Pape L, Latta K, et al. A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport's syndrome. Kidney Int. (2020) 97:1275–86. doi: 10.1016/j.kint.2019.12.015. DOI: https://doi.org/10.1016/j.kint.2019.12.015
Gibson J, Fieldhouse R, Chan MMY, Sadeghi-Alavijeh O, Burnett L, Izzi V, et al. Genomics england research consortium. prevalence estimates of predicted pathogenic COL4A3-COL4A5 variants in a population sequencing database and their implications for alport syndrome. J Am Soc Nephrol. (2021). 32:2273–90. doi: 10.1681/ASN.2020071065. DOI: https://doi.org/10.1681/ASN.2020071065
Gross O, Tönshoff B, Weber LT et al. German Pediatric Nephrology (GPN) Study Group and EARLY PRO-TECT Alport Investigators. A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport's syndrome. Kidney Int 2020(6):1275–1286. (56)
Guo J, Song W, Boulanger J et al. Dysregulated Expression of microRNA-21 and Disease-Related Genes in Human Patients and in a Mouse Model of Alport Syndrome. Hum Gene Ther 2019; 30(7):865–881. DOI: https://doi.org/10.1089/hum.2018.205
Imafuku A, Nozu K, Sawa N,Nakanishi K, Ubara Y. How to resolve cjnfusioninthe clinical setting for the diagnosis of heterozygous COL4A3 or COL4A4 gene variants. Discussion and suggestions from nephrologists.Clin. Exp Nephrol 2020;24:651-656. DOI: https://doi.org/10.1007/s10157-020-01880-1
Kashtan CE, Gross O. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for (2020). Pediatr Nephrol. (2021) 36:711–9. doi: 10.1007/s00467-020-04819-6. DOI: https://doi.org/10.1007/s00467-020-04819-6
Kashtan CE, Ding J, Garosi G et al. Alport syndrome: aunified classification of genetic disorders of collagen IV α345: a position paper of the Alport Syndrome Classification Work-ing Group. Kidney Int 2018; 93(5):1045–1051. DOI: https://doi.org/10.1016/j.kint.2017.12.018
Kashtan CE. Renal transplantation in patients with Alport syndrome: patient selection, outcomes, and donor evaluation. Int J Nephrol Renovasc Dis. (2018) 11:267–270. doi: 10.2147/IJNRD.S150539. DOI: https://doi.org/10.2147/IJNRD.S150539
Kuebler B, Aran B, Miquel-Serra L, Muñoz Y, Ars E, Bullich G, et al. Integration-free induced pluripotent stem cells derived from a patient with autosomal recessive Alport syndrome (ARAS). Stem Cell Res. (2017) 25:1–5. doi: 10.1016/j.scr.2017.08.021. DOI: https://doi.org/10.1016/j.scr.2017.08.021
Meehan DT, Delimont D, Dufek B et al. Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice. Hear Res 2016; 341:100–108. DOI: https://doi.org/10.1016/j.heares.2016.08.003
Mencarelli MA, Heidet L, Storey H et al. Evidence of digenic inheritance in Alport syndrome. J Med Genet 2015; 52(3):163–174. DOI: https://doi.org/10.1136/jmedgenet-2014-102822
Quinlan D, Catherine R. Genetic Basis of Type IV collagen disorders of the kidney. CJASN. (2021) 16:1101–9. doi: 10.2215/CJN.19171220. DOI: https://doi.org/10.2215/CJN.19171220
Rheualt MN, Kashtan CE. Alport syndrome and Thin Dasement Membrane Nephropathy. Pediatric Kidney Disease Eds: D.F. Geary and F.Schaefer Springer-Verlag Berlin Heidelberg 2016; 18.DOI:10/1007/978-3-662-52972-0_17.
Savige J, Lipska-Zietkiewicz BS, Watson E, Hertz JM, Deltas C, Mari F, et al. Guidelines for genetic testing and management of alport syndrome. Clin J Am Soc Nephrol. (2021) 20:CJN.04230321. doi: 10.2215/CJN.04230321. DOI: https://doi.org/10.2215/CJN.04230321
Yap Hui-Kumand Lau Perry Yew-Weng. Hematuria and proteinuria. Pediatric Kidney Disease Eds: D.F. Geary and F.Schaefer Springer-Verlag Berlin Heidelberg 2016; 143.DOI:10/1007/978-3-662-52972-0_17.
Zhang Y, Ding J, Zhang H et al. Effect of heterozygous pathogenic COL4A3 or COL4A4 variants on patients with X-linked Alport syndrome. Mol Genet Genomic Med 2019; 7(5): 647. DOI: https://doi.org/10.1002/mgg3.647
Żurowska AM, Bielska O, Daca-Roszak P et al. Mild X-linked Alport syndrome due to the COL4A5 G624D variant origi-nating in the Middle Ages is predominant in Central/East Europeand causes kidney failure in midlife. Kidney Int 2020;10: S0085–2538(20)31410-1. DOI: https://doi.org/10.1016/j.kint.2020.10.040
Karimdzhanov I.A., Rahmanova L.K. Nekotorye aspekty techeniya i lecheniya hronicheskoj bolezni pochek u detej. ZHurnal Detskaya medicina Severo-Zapada.2018;7(1):144-145.
Levine AP, Chan MMY, Sadeghi-Alavijeh O, et al. Large-scale whole-genome sequencing reveals the genetic architecture of primary membranoproliferative GN and C3 glomerulopathy. J Am Soc Nephrol. 2020;31:365–373. doi: 10.1681/ASN.2019040433. DOI: https://doi.org/10.1681/ASN.2019040433
Nasledstvennye bolezni pochek u detej. Rukovodstvo dlya vrachej pod red. N.D.Savenkovoj. SPb.:2020.-440s.
Nefropatii s sindromom gematurii. Pod red: V.V.Dlina, M.S.Ignatovoj. «Overlej», M., 2016; 120. [37] Rakhmanova L.K., Boltaboeva M.M., Karimova U.N., Tursunbaev A.K.,
Ganieva U.M. The role of stigma of dyzembryogenesis in the diagnosis of orphan diseases in children. Journal of Chemical Health Risks. JCHR. (2024), 14(3), 491-495. ISSN: 2251- 6727.
Raxmanova L.K., Karimdjanov I.A. Immunopatogenetic feature of the development of chronic kidney disease in children. International Journal of Scientific Pediatrics. 2023;3(13):60-66. DOI: https://doi.org/10.56121/2181-2926-2023-3-60-66
Alport A.C. Hereditary familial congenital haemorrhagic nephritis. Br Med J. 1927;1(3454):504-506. DOI: https://doi.org/10.1136/bmj.1.3454.504
How to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.